In this work a new clustering approach is used to explore a well- known dataset [Whitfield, M. L., Sherlock, G., Saldanha, A. J., Murray, J. I., Ball, C. A., Alexander, K. E., et al. (2002). Molecular biology of the cell: Vol. 13. Identification of genes periodically expressed in the human cell cycle and their expression in tumors (pp. 1977–2000)] of time dependent gene expression profiles in human cell cycle. The approach followed by us is realized with a multi-step procedure: after preprocessing, parameters are chosen by using data sub sampling and stability measures; for any used model, several different clustering solutions are obtained by random initialization and are selected basing on a similarity measure and a figure of merit; finally the selected solutions are tuned by evaluating a reliability measure. Three different models for clustering, K-means, Self-organizing Maps and Probabilistic Principal Surfaces are compared. Comparative analysis is carried out by considering: similarity between best solutions obtained through the three methods, absolute distortion value and validation through the use of Gene Ontology (GO) annotations. The GO annotations are used to give significance to the obtained clusters and to compare the results with those obtained in the work cited above.

Interactive data analysis and clustering of genomic data

IORIO, FRANCESCO;RAICONI, Giancarlo;TAGLIAFERRI, Roberto
2008-01-01

Abstract

In this work a new clustering approach is used to explore a well- known dataset [Whitfield, M. L., Sherlock, G., Saldanha, A. J., Murray, J. I., Ball, C. A., Alexander, K. E., et al. (2002). Molecular biology of the cell: Vol. 13. Identification of genes periodically expressed in the human cell cycle and their expression in tumors (pp. 1977–2000)] of time dependent gene expression profiles in human cell cycle. The approach followed by us is realized with a multi-step procedure: after preprocessing, parameters are chosen by using data sub sampling and stability measures; for any used model, several different clustering solutions are obtained by random initialization and are selected basing on a similarity measure and a figure of merit; finally the selected solutions are tuned by evaluating a reliability measure. Three different models for clustering, K-means, Self-organizing Maps and Probabilistic Principal Surfaces are compared. Comparative analysis is carried out by considering: similarity between best solutions obtained through the three methods, absolute distortion value and validation through the use of Gene Ontology (GO) annotations. The GO annotations are used to give significance to the obtained clusters and to compare the results with those obtained in the work cited above.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/1845818
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 22
social impact