The use of small molecules that bind and stabilize G-quadruplex structures is emerging as a promising way to inhibit telomerase activity in tumor cells. In this paper, isothermal titration calorimetry (ITC) and 1H NMR studies have been conducted to examine the binding of distamycin A and its two carbamoyl derivatives (compounds 1 and 2) to the target [d(TGGGGT)]4 and d[AG3(T2AG3)3] quadruplexes from the Tetrahymena and human telomeres, respectively. The interactions were examined using two different buffered solutions containing either K+ or Na+ at a fixed ionic strength, to evaluate any influence of the ions present in solution on the binding behaviour. Experiments reveal that distamycin A and compound 1 bind the investigated quadruplexes in both solution conditions; conversely, compound 2 appears to have a poor affinity in any case. Moreover, these studies indicate that the presence of different cations in solution affects the stoichiometry and thermodynamics of the interactions.

Targeting DNA quadruplexes with distamycin A and its derivatives: An ITC and NMR study

MATTIA, Carlo;
2008-01-01

Abstract

The use of small molecules that bind and stabilize G-quadruplex structures is emerging as a promising way to inhibit telomerase activity in tumor cells. In this paper, isothermal titration calorimetry (ITC) and 1H NMR studies have been conducted to examine the binding of distamycin A and its two carbamoyl derivatives (compounds 1 and 2) to the target [d(TGGGGT)]4 and d[AG3(T2AG3)3] quadruplexes from the Tetrahymena and human telomeres, respectively. The interactions were examined using two different buffered solutions containing either K+ or Na+ at a fixed ionic strength, to evaluate any influence of the ions present in solution on the binding behaviour. Experiments reveal that distamycin A and compound 1 bind the investigated quadruplexes in both solution conditions; conversely, compound 2 appears to have a poor affinity in any case. Moreover, these studies indicate that the presence of different cations in solution affects the stoichiometry and thermodynamics of the interactions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/1846728
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 49
social impact