In this paper, a method for the extraction of high purity lycopene from tomato wastes is presented. The method is based on a pressurized extraction that uses the Extractor Naviglio, and it is performed in the 0.7-0.9 MPa range. Tomato skin, the byproduct deriving from manufacturing of tomato, in a water dispersion, are used as starting material. Lycopene is transferred, for the effect of the high pressure used, in the form of molecular aggregates into the water as a dispersion, while apolar compounds remain in the matrix. The aggregates are easily purified in a single subsequent step by using methanol, thus, obtaining lycopene at 98% chromatographic purity or higher. A new stationary phase, phenyl-hexyl silicone, and a simple water/acetonitrile gradient were used for HPLC analysis of lycopene. The extract was characterized by UV-Vis spectrophotometry, 1H NMR, 13C NMR, and electrospray ionization mass spectrometry. An average recovery of 2.8 mg lycopene/kg tomato waste can be obtained after 4 hours of extraction and using tap water as the extracting liquid. The recovery percentage was of about 10%. The exhausted tomato byproduct can be easily dried and used in agriculture or as feeding for animals.

Characterization of High Purity Lycopene from Tomato Wastes Using a New Pressurized Extraction Approach

CARUSO, Tonino;P. IANNECE;
2008-01-01

Abstract

In this paper, a method for the extraction of high purity lycopene from tomato wastes is presented. The method is based on a pressurized extraction that uses the Extractor Naviglio, and it is performed in the 0.7-0.9 MPa range. Tomato skin, the byproduct deriving from manufacturing of tomato, in a water dispersion, are used as starting material. Lycopene is transferred, for the effect of the high pressure used, in the form of molecular aggregates into the water as a dispersion, while apolar compounds remain in the matrix. The aggregates are easily purified in a single subsequent step by using methanol, thus, obtaining lycopene at 98% chromatographic purity or higher. A new stationary phase, phenyl-hexyl silicone, and a simple water/acetonitrile gradient were used for HPLC analysis of lycopene. The extract was characterized by UV-Vis spectrophotometry, 1H NMR, 13C NMR, and electrospray ionization mass spectrometry. An average recovery of 2.8 mg lycopene/kg tomato waste can be obtained after 4 hours of extraction and using tap water as the extracting liquid. The recovery percentage was of about 10%. The exhausted tomato byproduct can be easily dried and used in agriculture or as feeding for animals.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/1848901
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 46
social impact