A method, based on a multiscale (wavelet) decomposition of the solution is proposed for the analysis of the Poisson problem. The solution is approximated by a finite series expansion of harmonic wavelets and is based on the computation of the connection coefficients. It is shown, how a sourceless Poisson’s problem, solved with the Daubechies wavelets, can also be solved in presence of a localized source in the harmonic wavelet basis.

Harmonic Wavelet Solution ofPoisson's Problem with a localized source

CATTANI, Carlo
2008-01-01

Abstract

A method, based on a multiscale (wavelet) decomposition of the solution is proposed for the analysis of the Poisson problem. The solution is approximated by a finite series expansion of harmonic wavelets and is based on the computation of the connection coefficients. It is shown, how a sourceless Poisson’s problem, solved with the Daubechies wavelets, can also be solved in presence of a localized source in the harmonic wavelet basis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/1851573
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact