De Cock and Kerre, in considering Poincaré paradox, observed that the intuitive notion of “approximate similarity” cannot be adequately represented by the fuzzy equivalence relations. In this note we argue that the deduction apparatus of fuzzy logic gives adequate tools with which to face the question. Indeed, a first-order theory is proposed whose fuzzy models are plausible candidates for the notion of approximate similarity. A connection between these structures and the point-free metric spaces is also established.
Approximate similarities and Poincaré paradox
GERLA, Giangiacomo
2008
Abstract
De Cock and Kerre, in considering Poincaré paradox, observed that the intuitive notion of “approximate similarity” cannot be adequately represented by the fuzzy equivalence relations. In this note we argue that the deduction apparatus of fuzzy logic gives adequate tools with which to face the question. Indeed, a first-order theory is proposed whose fuzzy models are plausible candidates for the notion of approximate similarity. A connection between these structures and the point-free metric spaces is also established.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.