One of the major drawbacks of photovoltaic (PV) systems is represented by the effect of module mismatching and of partial shading of the PV field. Distributed maximum power point tracking (DMPPT) is a very promising technique that allows the increase of efficiency and reliability of such systems. Modeling and designing a PV system with DMPPT is remarkably more complex than implementing a standard MPPT technique. In this paper, a DMPPT system for PV arrays is proposed and analyzed. A dc and small-signal ac model is derived to analyze steady-state behavior, as well as dynamics and stability, of the whole system. Finally, simulation results are reported and discussed.

Distributed Maximum Power Point Tracking of Photovoltaic Arrays. Novel Approach and System Analysis

FEMIA, Nicola;LISI, GIANPAOLO;PETRONE, GIOVANNI;SPAGNUOLO, Giovanni;
2008

Abstract

One of the major drawbacks of photovoltaic (PV) systems is represented by the effect of module mismatching and of partial shading of the PV field. Distributed maximum power point tracking (DMPPT) is a very promising technique that allows the increase of efficiency and reliability of such systems. Modeling and designing a PV system with DMPPT is remarkably more complex than implementing a standard MPPT technique. In this paper, a DMPPT system for PV arrays is proposed and analyzed. A dc and small-signal ac model is derived to analyze steady-state behavior, as well as dynamics and stability, of the whole system. Finally, simulation results are reported and discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/1860271
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 501
  • ???jsp.display-item.citation.isi??? 392
social impact