Abstract: Background and purpose: Three-dimensional conformal radiotherapy and intensity modulated radiotherapy allow accurate dose delivery on target volumes. Due to the different background among specialists involved in target volume definition, the contouring emerges as one of the most questionable steps in treatment planning procedures. A software tool devoted to contouring training, named tutorial for image guided external radiotherapy ('TIGER'), based on the Visible Human Project images data-set, is described. Materials and methods: TIGER is addressed to facilitate the learning of axial anatomical images, to promote the training and reproducibility in contouring process, to allow the availability of a tool to enhance the 'drill and practice' approach in training programs. TIGER includes three different environments: Anatomic tutorial devoted to facilitate a self-learning approach to axial body sections; Contouring tutorial addressed to practice contouring process of anatomical structures and to undergo a test program prepared by tutors; Teacher's tools to offer to tutors the opportunity to insert new outlines in TIGER-database, according to local needs or conventions, and to use them in tutorial programs. TIGER-database is grouped in six main anatomical sections: head and neck, male thorax, female thorax, abdomen, male pelvis, and female pelvis. Overall 432 corresponding CT-VH images and 1189 contours of 134 different anatomical structures and lymphatic drainage areas are available. The access to the TIGER software is allowed by ESTRO web site (http://www.estro.be). Conclusions: TIGER provides an interactive human anatomy cross-sectional oriented source to facilitate the interpretation of CT scan images usually contoured in daily practice. It offers a drill tool to facilitate the learning of a reproducible contouring procedure
An application of visibile human database in radiotherapy: tutorial for image guided externalradiotherapy (TIGER) Radiother Oncol. PMID: 15028403Luogo e data di pubblicazione: ELSEVIER SCI IRELAND LTD, CLARE, IRELAND, 2004
NORI, Stefania Lucia;
2004-01-01
Abstract
Abstract: Background and purpose: Three-dimensional conformal radiotherapy and intensity modulated radiotherapy allow accurate dose delivery on target volumes. Due to the different background among specialists involved in target volume definition, the contouring emerges as one of the most questionable steps in treatment planning procedures. A software tool devoted to contouring training, named tutorial for image guided external radiotherapy ('TIGER'), based on the Visible Human Project images data-set, is described. Materials and methods: TIGER is addressed to facilitate the learning of axial anatomical images, to promote the training and reproducibility in contouring process, to allow the availability of a tool to enhance the 'drill and practice' approach in training programs. TIGER includes three different environments: Anatomic tutorial devoted to facilitate a self-learning approach to axial body sections; Contouring tutorial addressed to practice contouring process of anatomical structures and to undergo a test program prepared by tutors; Teacher's tools to offer to tutors the opportunity to insert new outlines in TIGER-database, according to local needs or conventions, and to use them in tutorial programs. TIGER-database is grouped in six main anatomical sections: head and neck, male thorax, female thorax, abdomen, male pelvis, and female pelvis. Overall 432 corresponding CT-VH images and 1189 contours of 134 different anatomical structures and lymphatic drainage areas are available. The access to the TIGER software is allowed by ESTRO web site (http://www.estro.be). Conclusions: TIGER provides an interactive human anatomy cross-sectional oriented source to facilitate the interpretation of CT scan images usually contoured in daily practice. It offers a drill tool to facilitate the learning of a reproducible contouring procedureI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.