A group G is said to be locally graded if every nontrivial, finitely generated subgroup of G has a nontrivial finite image. Every group can occur as a quotient of a locally graded group. It is shown that the largest subgroup and quotient closed interior of the class of locally graded groups is the class of groups in which every simple quotient of every finitely generated subgroup is finite. This article investigates conditions under which a given quotient of a locally graded group is locally graded, and the result is used to get more precise condition for a quotient of a linear group to be locally graded.

Locally Graded Quotients of Locally Graded Groups

TOTA, Maria;
2009

Abstract

A group G is said to be locally graded if every nontrivial, finitely generated subgroup of G has a nontrivial finite image. Every group can occur as a quotient of a locally graded group. It is shown that the largest subgroup and quotient closed interior of the class of locally graded groups is the class of groups in which every simple quotient of every finitely generated subgroup is finite. This article investigates conditions under which a given quotient of a locally graded group is locally graded, and the result is used to get more precise condition for a quotient of a linear group to be locally graded.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/1994181
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact