The analysis of a periodic signal with localized random (or high frequency) noise is given by using harmonic wavelets. Since they are orthogonal to the Fourier basis, by defining a projection wavelet operator the signal is automatically decomposed into the localized pulse and the periodic function. An application to the analysis of a selfsimilar non-stationary noise is also given.

Harmonic Wavelet Approximation of Random, Fractal and High Frequency Signals

CATTANI, Carlo
2010

Abstract

The analysis of a periodic signal with localized random (or high frequency) noise is given by using harmonic wavelets. Since they are orthogonal to the Fourier basis, by defining a projection wavelet operator the signal is automatically decomposed into the localized pulse and the periodic function. An application to the analysis of a selfsimilar non-stationary noise is also given.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/2283110
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact