The analysis of a periodic signal with localized random (or high frequency) noise is given by using harmonic wavelets. Since they are orthogonal to the Fourier basis, by defining a projection wavelet operator the signal is automatically decomposed into the localized pulse and the periodic function. An application to the analysis of a selfsimilar non-stationary noise is also given.
Harmonic Wavelet Approximation of Random, Fractal and High Frequency Signals
CATTANI, Carlo
2010
Abstract
The analysis of a periodic signal with localized random (or high frequency) noise is given by using harmonic wavelets. Since they are orthogonal to the Fourier basis, by defining a projection wavelet operator the signal is automatically decomposed into the localized pulse and the periodic function. An application to the analysis of a selfsimilar non-stationary noise is also given.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.