In this work ultrasonic atomization process is applied to produce biopolymer microparticles with potential applications in pharmaceutical and nutraceutical fields. Natural polymer (alginate)/water solution is atomized by ultrasonic assisted process and the droplets spray is reticulated using a solution of copper sulfate, where the Cu2+ ions cause the formation of a network structure (hard porous gel). Several operating parameters (solution concentration, flow rate, atomization power) are changed to study their effects on the produced microparticles. Literature correlations able to predict the features of the droplets as functions of process parameters are optimized using a statistical approach. Furthermore, the energy requirement for the drops production is compared with the energy required by traditional techniques to evaluate the intensification effect of the ultrasonic on the atomization process. doi:10.1016/j.cep.2009.08.004

Intensification of biopolymeric microparticles production by ultrasonic assisted atomization

BARBA, Anna Angela;D'AMORE, Matteo;CASCONE, SARA;LAMBERTI, Gaetano;TITOMANLIO, Giuseppe
2009-01-01

Abstract

In this work ultrasonic atomization process is applied to produce biopolymer microparticles with potential applications in pharmaceutical and nutraceutical fields. Natural polymer (alginate)/water solution is atomized by ultrasonic assisted process and the droplets spray is reticulated using a solution of copper sulfate, where the Cu2+ ions cause the formation of a network structure (hard porous gel). Several operating parameters (solution concentration, flow rate, atomization power) are changed to study their effects on the produced microparticles. Literature correlations able to predict the features of the droplets as functions of process parameters are optimized using a statistical approach. Furthermore, the energy requirement for the drops production is compared with the energy required by traditional techniques to evaluate the intensification effect of the ultrasonic on the atomization process. doi:10.1016/j.cep.2009.08.004
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/2291733
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 32
social impact