Non-stationary discrete time waveform relaxation methods for Abel systems of Volterra integral equations using fractional linear multistep formulae are introduced. Fully parallel discrete waveform relaxation methods having an optimal convergence rate are constructed. A significant expression of the error is proved, which allows us to estimate the number of iterations needed to satisfy a prescribed tolerance and allows us to identify the problems where the optimal methods offer the best performance. The numerical experiments confirm the theoretical expectations.

High performance parallel numerical methods for Volterra equations with weakly singular kernels

CONTE, Dajana;
2009-01-01

Abstract

Non-stationary discrete time waveform relaxation methods for Abel systems of Volterra integral equations using fractional linear multistep formulae are introduced. Fully parallel discrete waveform relaxation methods having an optimal convergence rate are constructed. A significant expression of the error is proved, which allows us to estimate the number of iterations needed to satisfy a prescribed tolerance and allows us to identify the problems where the optimal methods offer the best performance. The numerical experiments confirm the theoretical expectations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/2296988
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 17
social impact