We discuss the phenomenon of long-distance entanglement (LDE) in the ground state of quantum spin models, its use in high-fidelity and robust quantum communication, and its realization in many-body systems of ultracold atoms in optical lattices and in arrays of coupled optical cavities. We investigate XX quantum spin models on one-dimensional lattices with open ends and different patterns of site-dependent interaction couplings, singling out two general settings: patterns that allow for perfect LDE in the ground state of the system, namely such that the end-to-end entanglement remains finite in the thermodynamic limit, and patterns of quasi-long-distance entanglement (QLDE) in the ground state of the system, namely such that the end-to-end entanglement vanishes with a very slow power-law decay as the length of the spin chain is increased. We discuss physical realizations of these models in ensembles of ultracold bosonic atoms loaded in optical lattices. We show how, using either suitably engineered super-lattice structures or exploiting the presence of edge impurities in lattices with single periodicity, it is possible to realize models endowed with nonvanishing LDE or QLDE. We then study how to realize models that optimize the robustness of QLDE at finite temperature and in the presence of imperfections using suitably engineered arrays of coupled optical cavities. For both cases the numerical estimates of the end-to-end entanglement in the actual physical systems are thoroughly compared with the analytical results obtained for the spin model systems. We finally introduce LDE-based schemes of long-distance quantum teleportation in linear arrays of coupled cavities, and show that they allow for high-fidelity and high success rates even at moderately high temperatures.

Long-distance entanglement in many-body atomic and optical systems

GIAMPAOLO, SALVATORE MARCO;ILLUMINATI, Fabrizio
2010

Abstract

We discuss the phenomenon of long-distance entanglement (LDE) in the ground state of quantum spin models, its use in high-fidelity and robust quantum communication, and its realization in many-body systems of ultracold atoms in optical lattices and in arrays of coupled optical cavities. We investigate XX quantum spin models on one-dimensional lattices with open ends and different patterns of site-dependent interaction couplings, singling out two general settings: patterns that allow for perfect LDE in the ground state of the system, namely such that the end-to-end entanglement remains finite in the thermodynamic limit, and patterns of quasi-long-distance entanglement (QLDE) in the ground state of the system, namely such that the end-to-end entanglement vanishes with a very slow power-law decay as the length of the spin chain is increased. We discuss physical realizations of these models in ensembles of ultracold bosonic atoms loaded in optical lattices. We show how, using either suitably engineered super-lattice structures or exploiting the presence of edge impurities in lattices with single periodicity, it is possible to realize models endowed with nonvanishing LDE or QLDE. We then study how to realize models that optimize the robustness of QLDE at finite temperature and in the presence of imperfections using suitably engineered arrays of coupled optical cavities. For both cases the numerical estimates of the end-to-end entanglement in the actual physical systems are thoroughly compared with the analytical results obtained for the spin model systems. We finally introduce LDE-based schemes of long-distance quantum teleportation in linear arrays of coupled cavities, and show that they allow for high-fidelity and high success rates even at moderately high temperatures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/2600149
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 40
social impact