Free discontinuity problems arising in the variational theory for fracture mechanics are considered. A Gamma-convergence proof for a r-adaptive 3D finite element discretization is given in the case of a brittle material. The optimal displacement field, crack pattern and mesh geometry are obtained through a variational procedure that encompasses both mechanical and configurational forces. Possible extensions to cohesive fracture and quasi-static evolutions are discussed.

On the convergence of 3D free discontinuity models in variational fracture

FRATERNALI, Fernando;
2010

Abstract

Free discontinuity problems arising in the variational theory for fracture mechanics are considered. A Gamma-convergence proof for a r-adaptive 3D finite element discretization is given in the case of a brittle material. The optimal displacement field, crack pattern and mesh geometry are obtained through a variational procedure that encompasses both mechanical and configurational forces. Possible extensions to cohesive fracture and quasi-static evolutions are discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/2600154
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 14
social impact