Low-frequency (LF) electric fields (EFs) are currently used in clinical therapies of several bone diseases to increase bone regenerative processes. To identify possible molecular mechanisms involved in these processes, we evaluated the effects on cell cultures of 1 h exposures to the signal generated by an apparatus of current clinical use (frequency 60 kHz, frequency of the modulating signal 12.5 Hz, 50% duty cycle, peak-to-peak voltage 24.5 V). Two different human cell lines, bone SaOS-2 and liver HepG2, were used. Exposures significantly increased alkaline phosphatase (ALP) enzymatic activity in both cell lines. The increase was about 35% in SaOS-2 cells and about 80% in HepG2 cells and occurred in the first 4 h after exposure and decreased to almost no change by 24 h. Since ALP represents a typical marker of bone regeneration, these results represent a first molecular evidence of biological effects from 60 kHz EF exposures. The finding of similar effects in cells derived from two different tissues more likely indicates the effective operation of the mechanism in living organisms.

Induction of alkaline phosphatase activity by exposure of human cell lines to a low frequency (LF) electric field from apparatuses used in clinical therapies.

BISCEGLIA, BRUNO;ZIRPOLI, HYLDE;CAPUTO, MARIELLA;CHIADINI, FRANCESCO;SCAGLIONE, Antonio;TECCE, Mario Felice
2011-01-01

Abstract

Low-frequency (LF) electric fields (EFs) are currently used in clinical therapies of several bone diseases to increase bone regenerative processes. To identify possible molecular mechanisms involved in these processes, we evaluated the effects on cell cultures of 1 h exposures to the signal generated by an apparatus of current clinical use (frequency 60 kHz, frequency of the modulating signal 12.5 Hz, 50% duty cycle, peak-to-peak voltage 24.5 V). Two different human cell lines, bone SaOS-2 and liver HepG2, were used. Exposures significantly increased alkaline phosphatase (ALP) enzymatic activity in both cell lines. The increase was about 35% in SaOS-2 cells and about 80% in HepG2 cells and occurred in the first 4 h after exposure and decreased to almost no change by 24 h. Since ALP represents a typical marker of bone regeneration, these results represent a first molecular evidence of biological effects from 60 kHz EF exposures. The finding of similar effects in cells derived from two different tissues more likely indicates the effective operation of the mechanism in living organisms.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3005621
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 5
social impact