The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of optimal solutions is proved. A collective Gauss-Seidel scheme and a multigrid scheme are discussed. Optimal computational performance of these iterative schemes is proved by local Fourier analysis and demonstrated by results of numerical experiments.

Fast solvers of Fredholm optimal control problems

ANNUNZIATO, Mario;
2010-01-01

Abstract

The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of optimal solutions is proved. A collective Gauss-Seidel scheme and a multigrid scheme are discussed. Optimal computational performance of these iterative schemes is proved by local Fourier analysis and demonstrated by results of numerical experiments.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3009816
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact