The quantum discrete self-trapping equation with three degrees of freedom is investigated. Numerically evaluated eigenvalues are shown to exhibit the avoided-crossing phenomenon. The nearest-neighbour level spacing distributions for symmetric states corresponding to three particular choices of parameter values are shown to be consistent with a semiclassical conjecture by Berry and Robnik (1984).

Avoided crossing and nearest-neighbour level spacings for the quantum DST equation

DE FILIPPO, Sergio;FUSCO GIRARD, Mario;SALERNO, Mario
1989

Abstract

The quantum discrete self-trapping equation with three degrees of freedom is investigated. Numerically evaluated eigenvalues are shown to exhibit the avoided-crossing phenomenon. The nearest-neighbour level spacing distributions for symmetric states corresponding to three particular choices of parameter values are shown to be consistent with a semiclassical conjecture by Berry and Robnik (1984).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/3018910
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 22
social impact