Canonical coordinates for the Schrödinger equation are introduced, making more transparent its Hamiltonian structure. It is shown that the Schrödinger equation, considered as a classical field theory, shares with Liouville completely integrable field theories the existence of a recursion operator which allows for the infinitely many conserved functionals pairwise commuting with respect to the corresponding Poisson bracket. The approach may provide a good starting point to get a clear interpretation of Quantum Mechanics in the general setting, provided by Stone-von Neumann theorem, of Symplectic Mechanics. It may give new tools to solve in the general case the inverse problem of quantum mechanics whose solution is given up to now only for one-dimensional systems by the Gel’fand-Levitan-Marchenko formula.
Symplectic Structures and Quantum Mechanics
MARMO, Giuseppe;VILASI, Gaetano
1996-01-01
Abstract
Canonical coordinates for the Schrödinger equation are introduced, making more transparent its Hamiltonian structure. It is shown that the Schrödinger equation, considered as a classical field theory, shares with Liouville completely integrable field theories the existence of a recursion operator which allows for the infinitely many conserved functionals pairwise commuting with respect to the corresponding Poisson bracket. The approach may provide a good starting point to get a clear interpretation of Quantum Mechanics in the general setting, provided by Stone-von Neumann theorem, of Symplectic Mechanics. It may give new tools to solve in the general case the inverse problem of quantum mechanics whose solution is given up to now only for one-dimensional systems by the Gel’fand-Levitan-Marchenko formula.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.