Dry clutches are widely used in conventional and innovative automotive drivelines and represent a key element for automated manual transmissions (AMTs). In practical applications, it is fundamental to model the clutch behavior through its torque transmissibility characteristic, i.e., the relationship between the throwout bearing position (or the pressure applied by the clutch actuator) and the torque transmitted through the clutch during the engagement phase. In this paper, a new model for the torque transmissibility of dry clutches is proposed. It is analyzed how the transmissibility characteristic depends on: friction pads geometry, cushion spring compression, cushion spring load, and slip-speed-dependent friction. Corresponding functions are suitably composed determining the torque transmissibility expression. An experimental procedure for tuning the characteristic parameters is presented. The clutch-torque transmissibility model is tested on a detailed cosimulation model with a typical AMT controller.

Torque Transmissibility Assessment for Automotive Dry-Clutch Engagement

SENATORE, ADOLFO;
2011-01-01

Abstract

Dry clutches are widely used in conventional and innovative automotive drivelines and represent a key element for automated manual transmissions (AMTs). In practical applications, it is fundamental to model the clutch behavior through its torque transmissibility characteristic, i.e., the relationship between the throwout bearing position (or the pressure applied by the clutch actuator) and the torque transmitted through the clutch during the engagement phase. In this paper, a new model for the torque transmissibility of dry clutches is proposed. It is analyzed how the transmissibility characteristic depends on: friction pads geometry, cushion spring compression, cushion spring load, and slip-speed-dependent friction. Corresponding functions are suitably composed determining the torque transmissibility expression. An experimental procedure for tuning the characteristic parameters is presented. The clutch-torque transmissibility model is tested on a detailed cosimulation model with a typical AMT controller.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3023622
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 110
  • ???jsp.display-item.citation.isi??? 76
social impact