Four new bibenzyl derivatives were isolated, together with other known bibenzyls, by bioassay-guided fractionation of a CHCl3-MeOH extract of Notholaena nivea Desv. (Pteridaceae) aerial parts. The structures were elucidated by NMR, ESIMS and other spectral analyses. Their antioxidative effects towards superoxide, lipidic peroxidation and the 2,2'-azino-bis-3- ethilbenzothiazoline-6-sulfonic acid (ABTS) radical were assayed. Results showed that the compound 3,12-dihydroxy-5-methoxybibenzyl (6) is the most active compound in the ABTS free-radical scavenging test, while in the coupled oxidation of β-carotene and linoleic acid assay the compound 5,12-dihydroxy-3-methoxydibenzyl-6-carboxylic acid (1) exerted the highest activity after 1h. A superoxide anion enzymatic test was also carried out and the results were confirmed by an inhibition of xanthine oxidase activity assay. The putative protective role played by compounds 1 and 6 on the injurious effects of reactive oxygen metabolites on the intestinal epithelium, using a Caco-2 human cell line, was investigated. H2O2-induced alterations were prevented by preincubating the cells with compounds 1 and 6.
Antioxidant bibenzyl derivatives from Notholaena nivea Desv.
MONTORO, Paola;PIZZA, Cosimo;DE TOMMASI, Nunziatina
2011
Abstract
Four new bibenzyl derivatives were isolated, together with other known bibenzyls, by bioassay-guided fractionation of a CHCl3-MeOH extract of Notholaena nivea Desv. (Pteridaceae) aerial parts. The structures were elucidated by NMR, ESIMS and other spectral analyses. Their antioxidative effects towards superoxide, lipidic peroxidation and the 2,2'-azino-bis-3- ethilbenzothiazoline-6-sulfonic acid (ABTS) radical were assayed. Results showed that the compound 3,12-dihydroxy-5-methoxybibenzyl (6) is the most active compound in the ABTS free-radical scavenging test, while in the coupled oxidation of β-carotene and linoleic acid assay the compound 5,12-dihydroxy-3-methoxydibenzyl-6-carboxylic acid (1) exerted the highest activity after 1h. A superoxide anion enzymatic test was also carried out and the results were confirmed by an inhibition of xanthine oxidase activity assay. The putative protective role played by compounds 1 and 6 on the injurious effects of reactive oxygen metabolites on the intestinal epithelium, using a Caco-2 human cell line, was investigated. H2O2-induced alterations were prevented by preincubating the cells with compounds 1 and 6.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.