Solar disinfection (SODIS) of Escherichia coli suspensions in low-density polyethylene bag reactors was investigated as a low-cost disinfection method suitable for application in developing countries. The efficiency of a range of SODIS reactor configurations was examined (single skin (SS), double skin, black-backed single skin, silver-backed single skin (SBSS) and composite-backed single skin) using E. coli suspended in model and real surface water. Titanium dioxide was added to the reactors to improve the efficiency of the SODIS process. The effect of turbidity was also assessed. In addition to viable counts, E. coli injury was characterised through spread-plate analysis using selective and non-selective media. The optimal reactor configuration was determined to be the SBSS bag (t50 = 9.0 min) demonstrating the importance of UVA photons, as opposed to infrared in the SODIS disinfection mechanism. Complete inactivation (6.5-log) was achieved in the presence of turbidity (50 NTU) using the SBSS bag within 180 min simulated solar exposure. The addition of titanium dioxide (0.025 g L−1) significantly enhanced E. coli inactivation in the SS reactor, with 6-log inactivation observed within 90 min simulated solar exposure. During the early stages of both SODIS and photocatalytic disinfection, injured E. coli were detected; however, irreversible injury was caused and re-growth was not observed. Experiments under solar conditions were undertaken with total inactivation (6.5-log) observed in the SS reactor within 240 min, incomplete inactivation (4-log) was observed in SODIS bottles exposed to the same solar conditions.

Inactivation and injury assessment of Escherichia coli during solar and photocatalytic disinfection in LDPE bags

RIZZO, Luigi;
2011-01-01

Abstract

Solar disinfection (SODIS) of Escherichia coli suspensions in low-density polyethylene bag reactors was investigated as a low-cost disinfection method suitable for application in developing countries. The efficiency of a range of SODIS reactor configurations was examined (single skin (SS), double skin, black-backed single skin, silver-backed single skin (SBSS) and composite-backed single skin) using E. coli suspended in model and real surface water. Titanium dioxide was added to the reactors to improve the efficiency of the SODIS process. The effect of turbidity was also assessed. In addition to viable counts, E. coli injury was characterised through spread-plate analysis using selective and non-selective media. The optimal reactor configuration was determined to be the SBSS bag (t50 = 9.0 min) demonstrating the importance of UVA photons, as opposed to infrared in the SODIS disinfection mechanism. Complete inactivation (6.5-log) was achieved in the presence of turbidity (50 NTU) using the SBSS bag within 180 min simulated solar exposure. The addition of titanium dioxide (0.025 g L−1) significantly enhanced E. coli inactivation in the SS reactor, with 6-log inactivation observed within 90 min simulated solar exposure. During the early stages of both SODIS and photocatalytic disinfection, injured E. coli were detected; however, irreversible injury was caused and re-growth was not observed. Experiments under solar conditions were undertaken with total inactivation (6.5-log) observed in the SS reactor within 240 min, incomplete inactivation (4-log) was observed in SODIS bottles exposed to the same solar conditions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3086657
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 47
social impact