A subset S of a group G is called an Engel set if, for all x, y ∈ S, there is a non-negative integer n = n(x, y) such that [x,_n y] = 1. In this paper we are interested in finding conditions for a group generated by a finite Engel set to be nilpotent. In particular, we focus our investigation on groups generated by an Engel set of size two.

Groups generated by a finite Engel set

TORTORA, ANTONIO
2011-01-01

Abstract

A subset S of a group G is called an Engel set if, for all x, y ∈ S, there is a non-negative integer n = n(x, y) such that [x,_n y] = 1. In this paper we are interested in finding conditions for a group generated by a finite Engel set to be nilpotent. In particular, we focus our investigation on groups generated by an Engel set of size two.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3093502
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact