In this paper we study the long-term dynamics of a nonlinear suspension bridge system. The road bed and the main cable are modeled as a nonlinear beam and a vibrating string, respectively, and their coupling is carried out by one-sided springs. First, we scrutinize the set of stationary solutions, which turns out to be nontrivial when the axial load exceeds some critical value. Then, we prove the existence of a bounded global attractor of optimal regularity and we give its characterization in terms of the steady states of the problem.
Long-term dynamics of the coupled suspension bridge system
BOCHICCHIO, IVANA;
2012
Abstract
In this paper we study the long-term dynamics of a nonlinear suspension bridge system. The road bed and the main cable are modeled as a nonlinear beam and a vibrating string, respectively, and their coupling is carried out by one-sided springs. First, we scrutinize the set of stationary solutions, which turns out to be nontrivial when the axial load exceeds some critical value. Then, we prove the existence of a bounded global attractor of optimal regularity and we give its characterization in terms of the steady states of the problem.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.