Suppose X is a topological space and Y a proximity space , fn L C f (Leader Convergence) iff for each A in X, B in Y, f(A) near B implies eventually fn (A) is near B. L.C. is a generalization of U. C. (Uniform Convergence). In this paper we study L. C. and various generalizations and prove analogues of the classical results of Arzelà, Dini and others.

Proximal convergence

DI CONCILIO, Anna;
1987-01-01

Abstract

Suppose X is a topological space and Y a proximity space , fn L C f (Leader Convergence) iff for each A in X, B in Y, f(A) near B implies eventually fn (A) is near B. L.C. is a generalization of U. C. (Uniform Convergence). In this paper we study L. C. and various generalizations and prove analogues of the classical results of Arzelà, Dini and others.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3122456
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact