Abstract The category θ-Top of topological spaces and θ-continuous functions is not Cartesian closed; but it is known that under certain local property assumptions, the exponential law in θ-Top is fulfilled. We define a functor from θ-Top to the category of H-θ-topological spaces and prove that in this category the exponential law holds without any local property assumptions. We also provide a functor from θ-Top to Katětov's category of filter-merotopic spaces, which is Cartesian closed. A.M.S. 1980 subject classification: Primary, 54C35, Secondary, 54C10, 54B30, 18B30

Exponential law and theta-continuous functions

DI CONCILIO, Anna
1985-01-01

Abstract

Abstract The category θ-Top of topological spaces and θ-continuous functions is not Cartesian closed; but it is known that under certain local property assumptions, the exponential law in θ-Top is fulfilled. We define a functor from θ-Top to the category of H-θ-topological spaces and prove that in this category the exponential law holds without any local property assumptions. We also provide a functor from θ-Top to Katětov's category of filter-merotopic spaces, which is Cartesian closed. A.M.S. 1980 subject classification: Primary, 54C35, Secondary, 54C10, 54B30, 18B30
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3122457
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact