Nanohybrids of layered double hydroxide (LDH) with intercalated active molecules: benzoate, 2,4-dichlorobenzoate, para-hydroxybenzoate and ortho-hydroxybenzoate, were incorporated into pectins from apples through high energy ball milling in the presence of water. Cast films were obtained and analysed. X-ray diffraction analysis showed a complete destructuration of all nanohybrids in the pectin matrix. Thermogravimetric analysis showed a better thermal resistance of pectin in the presence of fillers, especially para-hydroxybenzoate and ortho-hydroxybenzoate. Mechanical properties showed an improvement of elastic modulus in particular for LDH-para-hydroxybenzoate nanohybrid, due probably to a better interaction between pectin matrix and nanohybrid layers. Barrier properties (sorption and diffusion) to water vapour showed improvement in the dependence on the intercalated active molecule, the best improvement was achieved for composites containing para-hydroxybenzoate molecules, suggesting that the interaction between the filler phase and the polymer plays an important role in sorption and diffusion phenomena. Incorporation of these active molecules gave antimicrobial properties to the composite films giving opportunities in the field of active packaging.

Pectins filled with LDH-antimicrobial molecules: Preparation, characterization and physical properties

GORRASI, Giuliana;VITTORIA, Vittoria
2012-01-01

Abstract

Nanohybrids of layered double hydroxide (LDH) with intercalated active molecules: benzoate, 2,4-dichlorobenzoate, para-hydroxybenzoate and ortho-hydroxybenzoate, were incorporated into pectins from apples through high energy ball milling in the presence of water. Cast films were obtained and analysed. X-ray diffraction analysis showed a complete destructuration of all nanohybrids in the pectin matrix. Thermogravimetric analysis showed a better thermal resistance of pectin in the presence of fillers, especially para-hydroxybenzoate and ortho-hydroxybenzoate. Mechanical properties showed an improvement of elastic modulus in particular for LDH-para-hydroxybenzoate nanohybrid, due probably to a better interaction between pectin matrix and nanohybrid layers. Barrier properties (sorption and diffusion) to water vapour showed improvement in the dependence on the intercalated active molecule, the best improvement was achieved for composites containing para-hydroxybenzoate molecules, suggesting that the interaction between the filler phase and the polymer plays an important role in sorption and diffusion phenomena. Incorporation of these active molecules gave antimicrobial properties to the composite films giving opportunities in the field of active packaging.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3122547
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 76
  • ???jsp.display-item.citation.isi??? 75
social impact