In the context of a well known theory for finite deformations of porous elastic materials, some theorems on uniqueness and continuous dependence on data are proved for both the dynamic and the static (nonlinear) problems. A possibly unbounded domain of the physical space is considered for the material in concern.

On Well-Posedness for Non-Linear Problems in the Theoryof Elastic Materials with Voids

SCARPETTA, Edoardo
1996-01-01

Abstract

In the context of a well known theory for finite deformations of porous elastic materials, some theorems on uniqueness and continuous dependence on data are proved for both the dynamic and the static (nonlinear) problems. A possibly unbounded domain of the physical space is considered for the material in concern.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3122614
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact