We determine the asymptotics of the largest family of qualitatively 2-independent k-partitions of an n-set, for every k>2. We generalize a Sperner-type theorem for 2-partite sets of Körner and Simonyi to the k-partite case. Both results have the feature that the corresponding trivial information-theoretic upper bound is tight. The results follow from a more general Sperner capacity theorem for a family of graphs in the sense of our previous work on Sperner theorems on directed graphs.

Sperner Capacities

GARGANO, Luisa;VACCARO, Ugo
1993-01-01

Abstract

We determine the asymptotics of the largest family of qualitatively 2-independent k-partitions of an n-set, for every k>2. We generalize a Sperner-type theorem for 2-partite sets of Körner and Simonyi to the k-partite case. Both results have the feature that the corresponding trivial information-theoretic upper bound is tight. The results follow from a more general Sperner capacity theorem for a family of graphs in the sense of our previous work on Sperner theorems on directed graphs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3136601
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 60
social impact