For a class of models of adaptive queueing systems an exact diffusion approximation is derived with the aim of obtaining information on the evolution of the system. Our approximating diffusion process includes the Wiener and the Ornstein-Uhlenbeck processes with reflecting boundaries at 0. The goodness of the approximations is thoroughly discussed and the closed-form solutions obtained for the diffusion processes are compared with those holding for the queueing system in order to investigate the conditions under which reliable information can be obtained from the approximating continuous models. For the latter the transient behaviour is quantitatively analysed and the distribution of the busy period is determined in closed form

On some diffusion approximations to queueing systems

GIORNO, Virginia;NOBILE, Amelia Giuseppina;
1986-01-01

Abstract

For a class of models of adaptive queueing systems an exact diffusion approximation is derived with the aim of obtaining information on the evolution of the system. Our approximating diffusion process includes the Wiener and the Ornstein-Uhlenbeck processes with reflecting boundaries at 0. The goodness of the approximations is thoroughly discussed and the closed-form solutions obtained for the diffusion processes are compared with those holding for the queueing system in order to investigate the conditions under which reliable information can be obtained from the approximating continuous models. For the latter the transient behaviour is quantitatively analysed and the distribution of the busy period is determined in closed form
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3136752
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 21
social impact