We shall review test results which show that silicon detectors can withstand at 130 K temperature a fluence of 2×1015 cm–2 of 1 MeV neutrons, which is about 10 times higher than the fluence tolerated by the best detectors operated close to room temperature. The tests were carried out on simple pad devices and on microstrip detectors of different types. The devices were irradiated at room temperature using reactor neutrons, and in situ at low temperatures using high-energy protons and lead ions. No substantial difference was observed between samples irradiated at low temperature and those irradiated at room temperature, after beneficial annealing. The design of low-mass modules for low-temperature trackers is discussed briefly, together with the cooling circuits for small and large systems.
Radiation hardness of cryogenic silicon detectors
PAGANO, Sergio;
2002-01-01
Abstract
We shall review test results which show that silicon detectors can withstand at 130 K temperature a fluence of 2×1015 cm–2 of 1 MeV neutrons, which is about 10 times higher than the fluence tolerated by the best detectors operated close to room temperature. The tests were carried out on simple pad devices and on microstrip detectors of different types. The devices were irradiated at room temperature using reactor neutrons, and in situ at low temperatures using high-energy protons and lead ions. No substantial difference was observed between samples irradiated at low temperature and those irradiated at room temperature, after beneficial annealing. The design of low-mass modules for low-temperature trackers is discussed briefly, together with the cooling circuits for small and large systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.