A comparative analysis of two types of hyperelastic waves—plane waves (with plane front) and cylindrical waves (with curved front)—is offered. The propagation of the waves is studied theoretically for quadratically nonlinear hyperelastic media and numerically for a class of unidirectional fibrous composite materials. Hyperelasticity is described using the classical Murnaghan potential and a structural model of the first order—the model of effective constants. The internal structure of materials is described by this model and is at the micro- or nanolevels in numerical analysis. Particular attention is given to the evolution of the wave profile. It is studied in three stages: (i) derivation of nonlinear wave equations, (ii) construction of solutions in the form of plane and cylindrical waves, and (iii) numerical analysis of the evolution of these waves in composites with microlevel (Thornel) or nanolevel (Z-CNT) fibers. The main similarities and differences between plane longitudinal and cylindrical waves are shown. The most unexpected result is the striking difference between the evolution patterns numerically observed for plane and cylindrical wave profiles

ANALYSIS OF PLANE AND CYLINDRICAL NONLINEAR HYPERELASTIC WAVESIN MATERIALS WITH INTERNAL STRUCTURE

CATTANI, Carlo
2006-01-01

Abstract

A comparative analysis of two types of hyperelastic waves—plane waves (with plane front) and cylindrical waves (with curved front)—is offered. The propagation of the waves is studied theoretically for quadratically nonlinear hyperelastic media and numerically for a class of unidirectional fibrous composite materials. Hyperelasticity is described using the classical Murnaghan potential and a structural model of the first order—the model of effective constants. The internal structure of materials is described by this model and is at the micro- or nanolevels in numerical analysis. Particular attention is given to the evolution of the wave profile. It is studied in three stages: (i) derivation of nonlinear wave equations, (ii) construction of solutions in the form of plane and cylindrical waves, and (iii) numerical analysis of the evolution of these waves in composites with microlevel (Thornel) or nanolevel (Z-CNT) fibers. The main similarities and differences between plane longitudinal and cylindrical waves are shown. The most unexpected result is the striking difference between the evolution patterns numerically observed for plane and cylindrical wave profiles
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3391878
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact