In this paper we show two new learning algorithms for a fuzzy min–max neural network. The top down fuzzy min–max (TDFMM) algorithm modifies the classic Simpson's learning algorithm overcoming its main difficulties: the dependence on the presentation order of the patterns and the poor resolutive adaptation to the characteristics of input space. The top down fuzzy min–max regressor (TDFMMR) algorithm extends our neural network to solve regression problems by using a hybrid fuzzy classifier and a gradient descent algorithm.

Fuzzy min–max neural networks: from classification to regression

TAGLIAFERRI, Roberto;BARONE, Fabrizio
2001-01-01

Abstract

In this paper we show two new learning algorithms for a fuzzy min–max neural network. The top down fuzzy min–max (TDFMM) algorithm modifies the classic Simpson's learning algorithm overcoming its main difficulties: the dependence on the presentation order of the patterns and the poor resolutive adaptation to the characteristics of input space. The top down fuzzy min–max regressor (TDFMMR) algorithm extends our neural network to solve regression problems by using a hybrid fuzzy classifier and a gradient descent algorithm.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3813888
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact