RAPD (Random Amplified Polymorphic DNA) fingerprints have recently been used to estimate genetic and taxonomic relationships in plants. In this study RAPD analysis was performed on 32 clones belonging to different species of the genus Populus. Of these, 25 clones are registered in several countries for commercial use and, altogether, cover almost 50% of the worlds cultivated poplars. DNA was prepared from leaves and amplified by PCR using random oligonucleotide primers. Amplification products were separated by agarose-gel electrophoresis to reveal band polymorphisms. Four primers out of the 18 tested, were selected on the basis of the number and frequency of the polymorphisms produced. With these a total of 120 different DNA bands were reproducibly obtained, 92% of which were polymorphic. The polymorphisms were scored and used in band-sharing analyses to identify genetic relationships. With a few but interesting exceptions, these are consistent with the present taxonomy of the genus Populus and with the known predigrees of cultivated poplars. Moreover, the results show that RAPD analysis allows one to discriminate among all tested clones and can, therefore, be recommended as a convenient tool to defend plant breeders rights.
RAPD FINGERPRINTS FOR IDENTIFICATION AND FOR TAXONOMIC STUDIES OF ELITE POPLAR (POPULUS SPP) CLONES
CASTIGLIONE, STEFANO;
1993-01-01
Abstract
RAPD (Random Amplified Polymorphic DNA) fingerprints have recently been used to estimate genetic and taxonomic relationships in plants. In this study RAPD analysis was performed on 32 clones belonging to different species of the genus Populus. Of these, 25 clones are registered in several countries for commercial use and, altogether, cover almost 50% of the worlds cultivated poplars. DNA was prepared from leaves and amplified by PCR using random oligonucleotide primers. Amplification products were separated by agarose-gel electrophoresis to reveal band polymorphisms. Four primers out of the 18 tested, were selected on the basis of the number and frequency of the polymorphisms produced. With these a total of 120 different DNA bands were reproducibly obtained, 92% of which were polymorphic. The polymorphisms were scored and used in band-sharing analyses to identify genetic relationships. With a few but interesting exceptions, these are consistent with the present taxonomy of the genus Populus and with the known predigrees of cultivated poplars. Moreover, the results show that RAPD analysis allows one to discriminate among all tested clones and can, therefore, be recommended as a convenient tool to defend plant breeders rights.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.