Molecular structure of the ligand binding domain of hAhR has been modelled by homology modelling techniques and used for docking simulations with dioxin and nine more xenobiotics and endogenous ligands. The study evidences that different sites may bind these ligands, whereas only one binding site has been previously indicated by past studies on the mouse homologous receptor. The differences in the sequence of mouse and human AhR ligand binding domain may explain this observation, being most of them in the additional sites observed. Preferences of the evaluated ligands for the different sites are reported and discussed in view of their functional role.

Human aryl-hydrocarbon receptor and its interaction with dioxin and physiological ligands investigated by molecular modelling and docking simulations

MARABOTTI, ANNA;FACCHIANO A.
2011-01-01

Abstract

Molecular structure of the ligand binding domain of hAhR has been modelled by homology modelling techniques and used for docking simulations with dioxin and nine more xenobiotics and endogenous ligands. The study evidences that different sites may bind these ligands, whereas only one binding site has been previously indicated by past studies on the mouse homologous receptor. The differences in the sequence of mouse and human AhR ligand binding domain may explain this observation, being most of them in the additional sites observed. Preferences of the evaluated ligands for the different sites are reported and discussed in view of their functional role.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3874940
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 17
social impact