Psychrophiles are cold-adapted organisms that produce enzymes that display a high catalytic efficiency at low temperatures. In recent years, these low-temperature working enzymes have attracted the attention of scientists because of their peculiar properties that render them particularly useful in investigating the relationship between enzyme stability and flexibility. Recently, a new esterase was identified and isolated from the coldadapted organism Pseudoalteromonas haloplanktis. The enzyme, denoted as PhEST, presents a dimeric structure with a molecular mass of 60 kDa. In this work, we used Fourier transform infrared spectroscopy and molecular dynamics simulations to investigate the functional and structural properties of PhEST over a wide range of temperature. The obtained results reveal that the structure of PhEST is quite stable up to 40 °C. In fact, the protein starts to denature at about 45 °C through the formation of new secondary structural elements such as intermolecular β-sheets. In addition, our results indicate that the flexibility of protein segment 55-65 (335-345 in subunit B), which corresponds to a loop near the active site of the enzyme, plays a crucial role in the protein function.

Structure and dynamics of cold-adapted enzymes as investigated by FT-IR and MD. The case of an esterase from Pseudoalteromonas haloplanktis

MARABOTTI, ANNA;
2009-01-01

Abstract

Psychrophiles are cold-adapted organisms that produce enzymes that display a high catalytic efficiency at low temperatures. In recent years, these low-temperature working enzymes have attracted the attention of scientists because of their peculiar properties that render them particularly useful in investigating the relationship between enzyme stability and flexibility. Recently, a new esterase was identified and isolated from the coldadapted organism Pseudoalteromonas haloplanktis. The enzyme, denoted as PhEST, presents a dimeric structure with a molecular mass of 60 kDa. In this work, we used Fourier transform infrared spectroscopy and molecular dynamics simulations to investigate the functional and structural properties of PhEST over a wide range of temperature. The obtained results reveal that the structure of PhEST is quite stable up to 40 °C. In fact, the protein starts to denature at about 45 °C through the formation of new secondary structural elements such as intermolecular β-sheets. In addition, our results indicate that the flexibility of protein segment 55-65 (335-345 in subunit B), which corresponds to a loop near the active site of the enzyme, plays a crucial role in the protein function.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3874954
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact