The stereoregularity of polypropylene produced with C2-symmetric group 4 ansa-metallocene catalysts results from the interplay of two competing reactions, namely isotactic monomer polyinsertion and a side process of epimerization of the polymer chain at its active end; therefore, for this class of homogeneous catalysts, at variance with the “classical” heterogeneous Ziegler−Natta ones, enantioselectivity and stereoselectivity are not (necessarily) coincident. In this paper, possible methods for the separate determination of these two parameters are introduced and applied to propene polymerization in the presence of the prototypical catalyst rac-ethylene−bis(4,5,6,7-tetrahydro-1-indenyl)ZrCl2. The results prove that the relatively poor stereoselectivity of this catalyst above room temperature is consequent primarily to chain epimerization; monomer insertion indeed is highly enantioselective up to at least 80 °C. Preliminary evidence for the existence of more than one epimerization mechanism is also presented; this complicates the measurements of enantioselectivity based on 13C NMR characterizations of d-labeled poly(propene)s

Interfering Effects of Growing Chain Epimerization on Metallocene-Catalyzed Isotactic Propene Polymerization

CAPORASO, Lucia;
1997

Abstract

The stereoregularity of polypropylene produced with C2-symmetric group 4 ansa-metallocene catalysts results from the interplay of two competing reactions, namely isotactic monomer polyinsertion and a side process of epimerization of the polymer chain at its active end; therefore, for this class of homogeneous catalysts, at variance with the “classical” heterogeneous Ziegler−Natta ones, enantioselectivity and stereoselectivity are not (necessarily) coincident. In this paper, possible methods for the separate determination of these two parameters are introduced and applied to propene polymerization in the presence of the prototypical catalyst rac-ethylene−bis(4,5,6,7-tetrahydro-1-indenyl)ZrCl2. The results prove that the relatively poor stereoselectivity of this catalyst above room temperature is consequent primarily to chain epimerization; monomer insertion indeed is highly enantioselective up to at least 80 °C. Preliminary evidence for the existence of more than one epimerization mechanism is also presented; this complicates the measurements of enantioselectivity based on 13C NMR characterizations of d-labeled poly(propene)s
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/3879995
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 62
social impact