The asymmetry between electron and hole doping remains one of the central issues in high-temperature cuprate superconductivity, but our understanding of the electron-doped cuprates has been hampered by apparent discrepancies between the only two known families: Re2-xCexCuO4 and A1-xLaxCuO2. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially stabilized Sr1-xLaxCuO2 thin films synthesized by oxide molecular-beam epitaxy. Our results reveal a strong coupling between electrons and (π, π) antiferromagnetism that induces a Fermi surface reconstruction which pushes the nodal states below the Fermi level. This removes the hole pocket near (π/2, π/2), realizing nodeless superconductivity without requiring a change in the symmetry of the order parameter and providing a universal understanding of all electron-doped cuprates.

Nodeless Superconducting Phase Arising from a Strong (π, π) Antiferromagnetic Phase in the Infinite-Layer Electron-Doped Sr1-xLaxCuO2 Compound

MARITATO, Luigi;
2012

Abstract

The asymmetry between electron and hole doping remains one of the central issues in high-temperature cuprate superconductivity, but our understanding of the electron-doped cuprates has been hampered by apparent discrepancies between the only two known families: Re2-xCexCuO4 and A1-xLaxCuO2. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially stabilized Sr1-xLaxCuO2 thin films synthesized by oxide molecular-beam epitaxy. Our results reveal a strong coupling between electrons and (π, π) antiferromagnetism that induces a Fermi surface reconstruction which pushes the nodal states below the Fermi level. This removes the hole pocket near (π/2, π/2), realizing nodeless superconductivity without requiring a change in the symmetry of the order parameter and providing a universal understanding of all electron-doped cuprates.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/3891186
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 35
social impact