We present the basic notions and results of the geometric theory of second order PDEs in the framework of contact and symplectic manifolds including characteristics, formal integrability, existence and uniqueness of formal solutions of non-characteristic Cauchy problems. Then, we focus our attention to Monge-Ampère equations (MAEs) and discuss a natural class of MAEs arising in Kähler and para-Kähler geometry whose solutions are special Lagrangian submanifolds.

Monge-Ampère Equations on (Para-)Kähler Manifolds: from Characteristic Subspaces to Special Lagrangian Submanifolds

PUGLIESE, Fabrizio
2012-01-01

Abstract

We present the basic notions and results of the geometric theory of second order PDEs in the framework of contact and symplectic manifolds including characteristics, formal integrability, existence and uniqueness of formal solutions of non-characteristic Cauchy problems. Then, we focus our attention to Monge-Ampère equations (MAEs) and discuss a natural class of MAEs arising in Kähler and para-Kähler geometry whose solutions are special Lagrangian submanifolds.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3898769
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact