New dynamic models for realized covariance matrices are proposed. The expected value of the realized covariance matrix is specified in two steps: one for each realized variance, and one for the realized correlation matrix. The realized correlation model is a scalar dynamic conditional correlation model. Estimation can be done in two steps as well, and a QML interpretation is given to each step, by assuming a Wishart conditional distribution. The model is applicable to large matrices since estimation can be done by the composite likelihood method.
Dynamic conditional correlation models for realized covariance matrices
STORTI, Giuseppe
;
2012
Abstract
New dynamic models for realized covariance matrices are proposed. The expected value of the realized covariance matrix is specified in two steps: one for each realized variance, and one for the realized correlation matrix. The realized correlation model is a scalar dynamic conditional correlation model. Estimation can be done in two steps as well, and a QML interpretation is given to each step, by assuming a Wishart conditional distribution. The model is applicable to large matrices since estimation can be done by the composite likelihood method.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.