Due to its sensitivity and speed of execution, detection of ATP by luciferin-luciferase reaction is a widely spread system to highlight cell viability. The paper describes the methodology followed to successfully run the assay in the presence of yeast cells of two strains of the yeast Saccharomyces cerevisiae, BY4741 and CEN.PK2-1C and emphasizes the importance of correctly determining the contact time between the lysing agent and the yeast cells. Once this was established, luciferin-luciferase reaction was exploited to determine the maximum specific rate of growth, as well as cell viability in a series of routine tests. The results obtained in this preliminary study highlighted that using luciferin-luciferase can imply an over-estimation of maximum specific growth rate with respect to that determined by optical density and/or viable count. On the contrary, the bioluminescence assay gave the possibility to highlight, if employed together with viable count, physiological changes occurring in yeast cells as response to stressful environmental conditions such as those deriving from exposure of yeast cells to high temperature or those depending on the operative conditions applied during fed-batch operations.
Strengths and weaknesses in the determination of Saccharomyces cerevisiae cell viability by ATP-based bioluminescence assay
PACIELLO, LUCIA;LANDI, CARMINE;PARASCANDOLA, Palma
2013-01-01
Abstract
Due to its sensitivity and speed of execution, detection of ATP by luciferin-luciferase reaction is a widely spread system to highlight cell viability. The paper describes the methodology followed to successfully run the assay in the presence of yeast cells of two strains of the yeast Saccharomyces cerevisiae, BY4741 and CEN.PK2-1C and emphasizes the importance of correctly determining the contact time between the lysing agent and the yeast cells. Once this was established, luciferin-luciferase reaction was exploited to determine the maximum specific rate of growth, as well as cell viability in a series of routine tests. The results obtained in this preliminary study highlighted that using luciferin-luciferase can imply an over-estimation of maximum specific growth rate with respect to that determined by optical density and/or viable count. On the contrary, the bioluminescence assay gave the possibility to highlight, if employed together with viable count, physiological changes occurring in yeast cells as response to stressful environmental conditions such as those deriving from exposure of yeast cells to high temperature or those depending on the operative conditions applied during fed-batch operations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.