We present an analysis of the anomalous microlensing event, MOA-2010-BLG-073, announced by the Microlensing Observations in Astrophysics survey on 2010 March 18. This event was remarkable because the source was previously known to be photometrically variable. Analyzing the pre-event source light curve, we demonstrate that it is an irregular variable over timescales >200 days. Its dereddened color, (V – I) S, 0, is 1.221 ± 0.051 mag, and from our lens model we derive a source radius of 14.7 ± 1.3 R ⊙, suggesting that it is a red giant star. We initially explored a number of purely microlensing models for the event but found a residual gradient in the data taken prior to and after the event. This is likely to be due to the variability of the source rather than part of the lensing event, so we incorporated a slope parameter in our model in order to derive the true parameters of the lensing system. We find that the lensing system has a mass ratio of q = 0.0654 ± 0.0006. The Einstein crossing time of the event, t E = 44.3 ± 0.1 days, was sufficiently long that the light curve exhibited parallax effects. In addition, the source trajectory relative to the large caustic structure allowed the orbital motion of the lens system to be detected. Combining the parallax with the Einstein radius, we were able to derive the distance to the lens, DL = 2.8 ± 0.4 kpc, and the masses of the lensing objects. The primary of the lens is an M-dwarf with M L, 1 = 0.16 ± 0.03 M ⊙, while the companion has M L, 2 = 11.0 ± 2.0 M J, putting it in the boundary zone between planets and brown dwarfs.

MOA-2010-BLG-073L: An M-dwarf with a Substellar Companion at the Planet/Brown Dwarf Boundary

BOZZA, Valerio;SCARPETTA, Gaetano;
2013

Abstract

We present an analysis of the anomalous microlensing event, MOA-2010-BLG-073, announced by the Microlensing Observations in Astrophysics survey on 2010 March 18. This event was remarkable because the source was previously known to be photometrically variable. Analyzing the pre-event source light curve, we demonstrate that it is an irregular variable over timescales >200 days. Its dereddened color, (V – I) S, 0, is 1.221 ± 0.051 mag, and from our lens model we derive a source radius of 14.7 ± 1.3 R ⊙, suggesting that it is a red giant star. We initially explored a number of purely microlensing models for the event but found a residual gradient in the data taken prior to and after the event. This is likely to be due to the variability of the source rather than part of the lensing event, so we incorporated a slope parameter in our model in order to derive the true parameters of the lensing system. We find that the lensing system has a mass ratio of q = 0.0654 ± 0.0006. The Einstein crossing time of the event, t E = 44.3 ± 0.1 days, was sufficiently long that the light curve exhibited parallax effects. In addition, the source trajectory relative to the large caustic structure allowed the orbital motion of the lens system to be detected. Combining the parallax with the Einstein radius, we were able to derive the distance to the lens, DL = 2.8 ± 0.4 kpc, and the masses of the lensing objects. The primary of the lens is an M-dwarf with M L, 1 = 0.16 ± 0.03 M ⊙, while the companion has M L, 2 = 11.0 ± 2.0 M J, putting it in the boundary zone between planets and brown dwarfs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/3984258
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 29
social impact