For a group G, denote by ω(G) the number of conjugacy classes of normalizers of subgroups of G. Clearly, ω(G) = 1 if and only if G is a Dedekind group. Hence if G is a 2-group, then G is nilpotent of class ≤ 2 and if G is a p-group, p > 2, then G is abelian. We prove a generalization of this. Let G be a finite p-group with ω(G) ≤ p + 1. If p = 2, then G is of class ≤ 3; if p > 2, then G is of class ≤ 2.

p-Groups with few Conjugacy Classes of Normalizers

SICA, Carmela;TOTA, Maria
2013-01-01

Abstract

For a group G, denote by ω(G) the number of conjugacy classes of normalizers of subgroups of G. Clearly, ω(G) = 1 if and only if G is a Dedekind group. Hence if G is a 2-group, then G is nilpotent of class ≤ 2 and if G is a p-group, p > 2, then G is abelian. We prove a generalization of this. Let G be a finite p-group with ω(G) ≤ p + 1. If p = 2, then G is of class ≤ 3; if p > 2, then G is of class ≤ 2.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3991454
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact