Gas-solid heterogeneous photocatalytic oxidation (PCO) of cyclohexane in humidified air over TiO2 and Pt/TiO2 catalyst was studied. Pt/TiO2 photocatalysts were synthesized by photodeposition method at different Pt loadings (0.5–2 wt.%). The addition of 0.5 wt.% Pt does not significantly modify the TiO2 properties. The increase in Pt loading induces to an aggregation of metallic particles on TiO2 surface. The cyclohexane PCO was performed in a fluidized bed photoreactor at 60 and 100 °C. Pure TiO2 was more active than 1 and 2 wt.% Pt/TiO2 samples at 60 °C. Nevertheless, the conversion level increases with temperature on Pt/TiO2 photocatalysts. The cyclohexane was mineralized into CO2, water and low amount of CO. A beneficial effect of Pt addition was found, since total CO2 selectivity was obtained. The Pt/TiO2 photocatalysts prepared by photodeposition provide the total cyclohexane PCO without CO production. Photocatalysts deactivation was not observed in any performed test. Evidence of an opportune tuning of temperature is highlighted.

Cyclohexane photocatalytic oxidation on Pt/TiO2 catalysts

VAIANO, VINCENZO;SANNINO, Diana;CIAMBELLI, Paolo
2013

Abstract

Gas-solid heterogeneous photocatalytic oxidation (PCO) of cyclohexane in humidified air over TiO2 and Pt/TiO2 catalyst was studied. Pt/TiO2 photocatalysts were synthesized by photodeposition method at different Pt loadings (0.5–2 wt.%). The addition of 0.5 wt.% Pt does not significantly modify the TiO2 properties. The increase in Pt loading induces to an aggregation of metallic particles on TiO2 surface. The cyclohexane PCO was performed in a fluidized bed photoreactor at 60 and 100 °C. Pure TiO2 was more active than 1 and 2 wt.% Pt/TiO2 samples at 60 °C. Nevertheless, the conversion level increases with temperature on Pt/TiO2 photocatalysts. The cyclohexane was mineralized into CO2, water and low amount of CO. A beneficial effect of Pt addition was found, since total CO2 selectivity was obtained. The Pt/TiO2 photocatalysts prepared by photodeposition provide the total cyclohexane PCO without CO production. Photocatalysts deactivation was not observed in any performed test. Evidence of an opportune tuning of temperature is highlighted.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4025259
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 60
social impact