The effects of stacking interactions on the oxidation potentials of single strand oligonucleotides containing up to four consecutive adenines, alternated with thymines and cytosines in different sequences and ratios, have been determined by means of differential pulse voltammetry. Voltammetric measurements point toward the establishment in solution of structured oligonucleotide conformations, in which the nucleobases are well stacked altogether. Molecular dynamics simulations confirm that finding, indicating that single strands assume geometrical parameters characteristic of the B-DNA form. The analysis of the voltammetric signals in terms of a simple effective tight binding quantum model leads one to infer a robust set of parameters for treating hole transfer in one-electron-oxidized DNA containing adenines and thymines.
Stacking Interactions between Adenines in Oxidized Oligonucleotides
CAPOBIANCO, AMEDEO;CARUSO, Tonino;CELENTANO, MAURIZIO;D'URSI, Anna Maria;SCRIMA, MARIO;PELUSO, Andrea
2013
Abstract
The effects of stacking interactions on the oxidation potentials of single strand oligonucleotides containing up to four consecutive adenines, alternated with thymines and cytosines in different sequences and ratios, have been determined by means of differential pulse voltammetry. Voltammetric measurements point toward the establishment in solution of structured oligonucleotide conformations, in which the nucleobases are well stacked altogether. Molecular dynamics simulations confirm that finding, indicating that single strands assume geometrical parameters characteristic of the B-DNA form. The analysis of the voltammetric signals in terms of a simple effective tight binding quantum model leads one to infer a robust set of parameters for treating hole transfer in one-electron-oxidized DNA containing adenines and thymines.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.