This paper presents a computational method for solving a class of system of nonlinear singular fractional Volterra integro-differential equations. First, existences of a unique solution for under studying problem is proved. Then, shifted Chebyshev polynomials and their properties are employed to derive a general procedure for forming the operational matrix of fractional derivative for Chebyshev wavelets. The application of this operational matrix for solving mentioned problem is explained. In the next step, the error analysis of the proposed method is investigated. Finally, some examples are included for demonstrating the efficiency of the proposed method.

Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations

CATTANI, Carlo
2013

Abstract

This paper presents a computational method for solving a class of system of nonlinear singular fractional Volterra integro-differential equations. First, existences of a unique solution for under studying problem is proved. Then, shifted Chebyshev polynomials and their properties are employed to derive a general procedure for forming the operational matrix of fractional derivative for Chebyshev wavelets. The application of this operational matrix for solving mentioned problem is explained. In the next step, the error analysis of the proposed method is investigated. Finally, some examples are included for demonstrating the efficiency of the proposed method.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4117253
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact