Markov random field MRF is a widely used probabilistic model for expressing interaction of different events. One of the most successful applications is to solve image labeling problems in computer vision. This paper provides a survey of recent advances in this field. We give the background, basic concepts, and fundamental formulation of MRF. Two distinct kinds of discrete optimization methods, that is, belief propagation and graph cut, are discussed. We further focus on the solutions of two classical vision problems, that is, stereo and binary image segmentation using MRF model.

Markov Models for Image Labeling

CATTANI, Carlo
2012

Abstract

Markov random field MRF is a widely used probabilistic model for expressing interaction of different events. One of the most successful applications is to solve image labeling problems in computer vision. This paper provides a survey of recent advances in this field. We give the background, basic concepts, and fundamental formulation of MRF. Two distinct kinds of discrete optimization methods, that is, belief propagation and graph cut, are discussed. We further focus on the solutions of two classical vision problems, that is, stereo and binary image segmentation using MRF model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4119856
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact