A new operational matrix of fractional order integration for Legendre wavelets is derived. Block pulse functions and collocation method are employed to derive a general procedure for forming this matrix. Moreover, a computational method based on wavelet expansion together with this operational matrix is proposed to obtain approximate solution of the fractional population growth model of a species within a closed system.The main characteristic of the new approach is to convert the problem under study to a nonlinear algebraic equation.

Legendre Wavelets Method for Solving Fractional Population Growth Model in a Closed System

CATTANI, Carlo;
2013-01-01

Abstract

A new operational matrix of fractional order integration for Legendre wavelets is derived. Block pulse functions and collocation method are employed to derive a general procedure for forming this matrix. Moreover, a computational method based on wavelet expansion together with this operational matrix is proposed to obtain approximate solution of the fractional population growth model of a species within a closed system.The main characteristic of the new approach is to convert the problem under study to a nonlinear algebraic equation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4123458
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact