In the present study we investigated a combination of quantum dots with multi-walled carbon nanotubes as a possible future additive to the active layer of polymer solar cells. In this case the quantum dots should serve to enhance the long wavelength response of the solar cell, while the nanotubes enhance the charge carrier collection efficiency by favoring charge carrier separation and enhancement of the lateral conduction of the films. In order to clarify the interplay of the nanoparticles only, we deposited them into a non-conducting and transparent polymethyl-methalacrylate (PMMA) matrix. InP/ZnS quantum dots with an emission peak wavelength of 660 nm have been chosen in this study, because their addition can enhance the long wavelength response of conventional poly(3-hexylthiophene) (P3HT): phenyl-C61-butyric acid methyl ester (PCBM) bulk heterostructure polymer solar cells. In our study we kept the quantum dot concentration constant and varied the concentration of the carbon nanotubes (CNTs) in the deposited films. The characterization of the film morphology by scanning electron microscopy (SEM) imaging and of the optical properties by photoluminescence and transmittance revealed a rather complex interplay between nanotubes and quantum dots. In particular we found a strong quenching of the photoluminescence and an inhomogeneous CNT distribution for carbon nanotube concentrations exceeding 1%. The decrease in optical transmittance of the films with increasing CNT concentration is less pronounced, when quantum dots (QDs) are added. The optical transmittance in a wavelength range between 380 nm and 800 nm of the composites could be expressed empirically as a simple second order polynomial function.

Investigation of the optical characteristics of a combination of InP/ZnS-quantum dots with MWCNTs in a PMMA matrix

G. Landi;NEITZERT, Heinrich Christoph
2013

Abstract

In the present study we investigated a combination of quantum dots with multi-walled carbon nanotubes as a possible future additive to the active layer of polymer solar cells. In this case the quantum dots should serve to enhance the long wavelength response of the solar cell, while the nanotubes enhance the charge carrier collection efficiency by favoring charge carrier separation and enhancement of the lateral conduction of the films. In order to clarify the interplay of the nanoparticles only, we deposited them into a non-conducting and transparent polymethyl-methalacrylate (PMMA) matrix. InP/ZnS quantum dots with an emission peak wavelength of 660 nm have been chosen in this study, because their addition can enhance the long wavelength response of conventional poly(3-hexylthiophene) (P3HT): phenyl-C61-butyric acid methyl ester (PCBM) bulk heterostructure polymer solar cells. In our study we kept the quantum dot concentration constant and varied the concentration of the carbon nanotubes (CNTs) in the deposited films. The characterization of the film morphology by scanning electron microscopy (SEM) imaging and of the optical properties by photoluminescence and transmittance revealed a rather complex interplay between nanotubes and quantum dots. In particular we found a strong quenching of the photoluminescence and an inhomogeneous CNT distribution for carbon nanotube concentrations exceeding 1%. The decrease in optical transmittance of the films with increasing CNT concentration is less pronounced, when quantum dots (QDs) are added. The optical transmittance in a wavelength range between 380 nm and 800 nm of the composites could be expressed empirically as a simple second order polynomial function.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4202653
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact