We consider a standard Brownian motion whose drift alternates randomly between a positive and a negative value, according to a generalized telegraph process. We first investigate the distribution of the occupation time, i.e. the fraction of time when the motion moves with positive drift. This allows to obtain explicitly the probability law and the flow function of the random motion. We discuss three special cases when the times separating consecutive drift changes have (i) exponential distribution with constant rates, (ii) Erlang distribution, and (iii) exponential distribution with linear rates. In conclusion, in view of an application in environmental sciences we evaluate the density of a Wiener process with infinitesimal moments alternating at inverse Gaussian distributed random times.

Probability law and flow function of Brownian motion driven by a generalized telegraph process

DI CRESCENZO, Antonio;
2015

Abstract

We consider a standard Brownian motion whose drift alternates randomly between a positive and a negative value, according to a generalized telegraph process. We first investigate the distribution of the occupation time, i.e. the fraction of time when the motion moves with positive drift. This allows to obtain explicitly the probability law and the flow function of the random motion. We discuss three special cases when the times separating consecutive drift changes have (i) exponential distribution with constant rates, (ii) Erlang distribution, and (iii) exponential distribution with linear rates. In conclusion, in view of an application in environmental sciences we evaluate the density of a Wiener process with infinitesimal moments alternating at inverse Gaussian distributed random times.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4223053
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact