We study physical implications of the doubling of the algebra, an essential element in the construction of the noncommutative spectral geometry model, proposed by Connes and his collaborators as offering a geometric explanation for the standard model of strong and electroweak interactions. Linking the algebra doubling to the deformed Hopf algebra, we build Bogogliubov transformations and show the emergence of neutrino mixing.
Titolo: | Doubling of the Algebra and Neutrino Mixing within Noncommutative Spectral Geometry | |
Autori: | ||
Data di pubblicazione: | 2014 | |
Rivista: | ||
Abstract: | We study physical implications of the doubling of the algebra, an essential element in the construction of the noncommutative spectral geometry model, proposed by Connes and his collaborators as offering a geometric explanation for the standard model of strong and electroweak interactions. Linking the algebra doubling to the deformed Hopf algebra, we build Bogogliubov transformations and show the emergence of neutrino mixing. | |
Handle: | http://hdl.handle.net/11386/4253662 | |
Appare nelle tipologie: | 1.1.2 Articolo su rivista con ISSN |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.