We study physical implications of the doubling of the algebra, an essential element in the construction of the noncommutative spectral geometry model, proposed by Connes and his collaborators as offering a geometric explanation for the standard model of strong and electroweak interactions. Linking the algebra doubling to the deformed Hopf algebra, we build Bogogliubov transformations and show the emergence of neutrino mixing.

Doubling of the Algebra and Neutrino Mixing within Noncommutative Spectral Geometry

GARGIULO, MARIA VITTORIA;VITIELLO, Giuseppe
2014

Abstract

We study physical implications of the doubling of the algebra, an essential element in the construction of the noncommutative spectral geometry model, proposed by Connes and his collaborators as offering a geometric explanation for the standard model of strong and electroweak interactions. Linking the algebra doubling to the deformed Hopf algebra, we build Bogogliubov transformations and show the emergence of neutrino mixing.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4253662
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact