We investigate some large deviation problems for a random walk in continuous time {N(t); t≥0} with spatially inhomogeneous rates of alternating type. We first deal with the large deviation principle for the convergence of N(t)/t to a suitable constant. Then, the case of moderate deviations is also discussed. Motivated by possible applications in chemical physics context, we finally obtain an asymptotic lower bound for level crossing probabilities both in the case of finite and infinite horizon.

Asymptotic results for random walks in continuous time with alternating rates

Di Crescenzo, Antonio;Macci, Claudio;Martinucci, Barbara
2014

Abstract

We investigate some large deviation problems for a random walk in continuous time {N(t); t≥0} with spatially inhomogeneous rates of alternating type. We first deal with the large deviation principle for the convergence of N(t)/t to a suitable constant. Then, the case of moderate deviations is also discussed. Motivated by possible applications in chemical physics context, we finally obtain an asymptotic lower bound for level crossing probabilities both in the case of finite and infinite horizon.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4263853
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact